Add the interpreter
This commit is contained in:
parent
95d67b4aeb
commit
42ad82d96e
3 changed files with 886 additions and 0 deletions
3
projects/gcode-interpreter/BUILD.baezl
Normal file
3
projects/gcode-interpreter/BUILD.baezl
Normal file
|
@ -0,0 +1,3 @@
|
|||
py_project(
|
||||
name = "gcode-interpreter",
|
||||
)
|
15
projects/gcode-interpreter/README.md
Normal file
15
projects/gcode-interpreter/README.md
Normal file
|
@ -0,0 +1,15 @@
|
|||
# Gcode Interpreter
|
||||
|
||||
Extracted [from
|
||||
octoprint](https://raw.githubusercontent.com/OctoPrint/OctoPrint/master/src/octoprint/util/gcodeInterpreter.py), this
|
||||
package provides static analysis (ahem. abstract interpretation) of GCODE scripts for 3d printers to provide key data
|
||||
such as the bounding box through which the tool(s) move, estimated net movement time and the net amount of material
|
||||
extruded.
|
||||
|
||||
## License
|
||||
|
||||
This artifact is licensed under the GNU Affero General Public License http://www.gnu.org/licenses/agpl.html
|
||||
|
||||
Copyright © Reid McKenzie <me@arrdem.com>
|
||||
Copyright © Gina Häußge <osd@foosel.net>
|
||||
Copyright © David Braam
|
868
projects/gcode-interpreter/src/python/gcode_interpreter.py
Normal file
868
projects/gcode-interpreter/src/python/gcode_interpreter.py
Normal file
|
@ -0,0 +1,868 @@
|
|||
__author__ = "Gina Häußge <osd@foosel.net> based on work by David Braam"
|
||||
__license__ = "GNU Affero General Public License http://www.gnu.org/licenses/agpl.html"
|
||||
__copyright__ = "Copyright (C) 2013 David Braam, Gina Häußge - Released under terms of the AGPLv3 License"
|
||||
|
||||
|
||||
import base64
|
||||
import codecs
|
||||
import io
|
||||
import logging
|
||||
import math
|
||||
import os
|
||||
import re
|
||||
import zlib
|
||||
|
||||
|
||||
class Vector3D:
|
||||
"""
|
||||
3D vector value
|
||||
|
||||
Supports addition, subtraction and multiplication with a scalar value (float, int) as well as calculating the
|
||||
length of the vector.
|
||||
|
||||
Examples:
|
||||
|
||||
>>> a = Vector3D(1.0, 1.0, 1.0)
|
||||
>>> b = Vector3D(4.0, 4.0, 4.0)
|
||||
>>> a + b == Vector3D(5.0, 5.0, 5.0)
|
||||
True
|
||||
>>> b - a == Vector3D(3.0, 3.0, 3.0)
|
||||
True
|
||||
>>> abs(a - b) == Vector3D(3.0, 3.0, 3.0)
|
||||
True
|
||||
>>> a * 2 == Vector3D(2.0, 2.0, 2.0)
|
||||
True
|
||||
>>> a * 2 == 2 * a
|
||||
True
|
||||
>>> a.length == math.sqrt(a.x ** 2 + a.y ** 2 + a.z ** 2)
|
||||
True
|
||||
>>> copied_a = Vector3D(a)
|
||||
>>> a == copied_a
|
||||
True
|
||||
>>> copied_a.x == a.x and copied_a.y == a.y and copied_a.z == a.z
|
||||
True
|
||||
"""
|
||||
|
||||
def __init__(self, *args):
|
||||
if len(args) == 3:
|
||||
(self.x, self.y, self.z) = args
|
||||
|
||||
elif len(args) == 1:
|
||||
# copy constructor
|
||||
other = args[0]
|
||||
if not isinstance(other, Vector3D):
|
||||
raise ValueError("Object to copy must be a Vector3D instance")
|
||||
|
||||
self.x = other.x
|
||||
self.y = other.y
|
||||
self.z = other.z
|
||||
|
||||
@property
|
||||
def length(self):
|
||||
return math.sqrt(self.x * self.x + self.y * self.y + self.z * self.z)
|
||||
|
||||
def __add__(self, other):
|
||||
try:
|
||||
if len(other) == 3:
|
||||
return Vector3D(self.x + other[0], self.y + other[1], self.z + other[2])
|
||||
except TypeError:
|
||||
# doesn't look like a 3-tuple
|
||||
pass
|
||||
|
||||
try:
|
||||
return Vector3D(self.x + other.x, self.y + other.y, self.z + other.z)
|
||||
except AttributeError:
|
||||
# also doesn't look like a Vector3D
|
||||
pass
|
||||
|
||||
raise TypeError(
|
||||
"other must be a Vector3D instance or a list or tuple of length 3"
|
||||
)
|
||||
|
||||
def __sub__(self, other):
|
||||
try:
|
||||
if len(other) == 3:
|
||||
return Vector3D(self.x - other[0], self.y - other[1], self.z - other[2])
|
||||
except TypeError:
|
||||
# doesn't look like a 3-tuple
|
||||
pass
|
||||
|
||||
try:
|
||||
return Vector3D(self.x - other.x, self.y - other.y, self.z - other.z)
|
||||
except AttributeError:
|
||||
# also doesn't look like a Vector3D
|
||||
pass
|
||||
|
||||
raise TypeError(
|
||||
"other must be a Vector3D instance or a list or tuple of length 3"
|
||||
)
|
||||
|
||||
def __mul__(self, other):
|
||||
try:
|
||||
return Vector3D(self.x * other, self.y * other, self.z * other)
|
||||
except TypeError:
|
||||
# doesn't look like a scalar
|
||||
pass
|
||||
|
||||
raise ValueError("other must be a float or int value")
|
||||
|
||||
def __rmul__(self, other):
|
||||
return self.__mul__(other)
|
||||
|
||||
def __abs__(self):
|
||||
return Vector3D(abs(self.x), abs(self.y), abs(self.z))
|
||||
|
||||
def __eq__(self, other):
|
||||
if not isinstance(other, Vector3D):
|
||||
return False
|
||||
return self.x == other.x and self.y == other.y and self.z == other.z
|
||||
|
||||
def __str__(self):
|
||||
return "Vector3D(x={}, y={}, z={}, length={})".format(
|
||||
self.x, self.y, self.z, self.length
|
||||
)
|
||||
|
||||
|
||||
class MinMax3D:
|
||||
"""
|
||||
Tracks minimum and maximum of recorded values
|
||||
|
||||
Examples:
|
||||
|
||||
>>> minmax = MinMax3D()
|
||||
>>> minmax.record(Vector3D(2.0, 2.0, 2.0))
|
||||
>>> minmax.min.x == 2.0 == minmax.max.x and minmax.min.y == 2.0 == minmax.max.y and minmax.min.z == 2.0 == minmax.max.z
|
||||
True
|
||||
>>> minmax.record(Vector3D(1.0, 2.0, 3.0))
|
||||
>>> minmax.min.x == 1.0 and minmax.min.y == 2.0 and minmax.min.z == 2.0
|
||||
True
|
||||
>>> minmax.max.x == 2.0 and minmax.max.y == 2.0 and minmax.max.z == 3.0
|
||||
True
|
||||
>>> minmax.size == Vector3D(1.0, 0.0, 1.0)
|
||||
True
|
||||
>>> empty = MinMax3D()
|
||||
>>> empty.size == Vector3D(0.0, 0.0, 0.0)
|
||||
True
|
||||
>>> weird = MinMax3D(min_z=-1.0)
|
||||
>>> weird.record(Vector3D(2.0, 2.0, 2.0))
|
||||
>>> weird.record(Vector3D(1.0, 2.0, 3.0))
|
||||
>>> weird.min.z == -1.0
|
||||
True
|
||||
>>> weird.size == Vector3D(1.0, 0.0, 4.0)
|
||||
True
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
min_x=None,
|
||||
min_y=None,
|
||||
min_z=None,
|
||||
max_x=None,
|
||||
max_y=None,
|
||||
max_z=None,
|
||||
):
|
||||
min_x = min_x if min_x is not None else float("inf")
|
||||
min_y = min_y if min_y is not None else float("inf")
|
||||
min_z = min_z if min_z is not None else float("inf")
|
||||
max_x = max_x if max_x is not None else -float("inf")
|
||||
max_y = max_y if max_y is not None else -float("inf")
|
||||
max_z = max_z if max_z is not None else -float("inf")
|
||||
|
||||
self.min = Vector3D(min_x, min_y, min_z)
|
||||
self.max = Vector3D(max_x, max_y, max_z)
|
||||
|
||||
def record(self, coordinate):
|
||||
"""
|
||||
Records the coordinate, storing the min and max values.
|
||||
|
||||
The input vector components must not be None.
|
||||
"""
|
||||
self.min.x = min(self.min.x, coordinate.x)
|
||||
self.min.y = min(self.min.y, coordinate.y)
|
||||
self.min.z = min(self.min.z, coordinate.z)
|
||||
self.max.x = max(self.max.x, coordinate.x)
|
||||
self.max.y = max(self.max.y, coordinate.y)
|
||||
self.max.z = max(self.max.z, coordinate.z)
|
||||
|
||||
@property
|
||||
def size(self):
|
||||
result = Vector3D()
|
||||
for c in "xyz":
|
||||
min = getattr(self.min, c)
|
||||
max = getattr(self.max, c)
|
||||
value = abs(max - min) if max >= min else 0.0
|
||||
setattr(result, c, value)
|
||||
return result
|
||||
|
||||
@property
|
||||
def dimensions(self):
|
||||
size = self.size
|
||||
return {"width": size.x, "depth": size.y, "height": size.z}
|
||||
|
||||
@property
|
||||
def area(self):
|
||||
return {
|
||||
"minX": None if math.isinf(self.min.x) else self.min.x,
|
||||
"minY": None if math.isinf(self.min.y) else self.min.y,
|
||||
"minZ": None if math.isinf(self.min.z) else self.min.z,
|
||||
"maxX": None if math.isinf(self.max.x) else self.max.x,
|
||||
"maxY": None if math.isinf(self.max.y) else self.max.y,
|
||||
"maxZ": None if math.isinf(self.max.z) else self.max.z,
|
||||
}
|
||||
|
||||
|
||||
class AnalysisAborted(Exception):
|
||||
def __init__(self, reenqueue=True, *args, **kwargs):
|
||||
self.reenqueue = reenqueue
|
||||
Exception.__init__(self, *args, **kwargs)
|
||||
|
||||
|
||||
regex_command = re.compile(
|
||||
r"^\s*((?P<codeGM>[GM]\d+)(\.(?P<subcode>\d+))?|(?P<codeT>T)(?P<tool>\d+))"
|
||||
)
|
||||
"""Regex for a GCODE command."""
|
||||
|
||||
|
||||
class gcode:
|
||||
def __init__(self, incl_layers=False, progress_callback=None):
|
||||
self._logger = logging.getLogger(__name__)
|
||||
self.extrusionAmount = [0]
|
||||
self.extrusionVolume = [0]
|
||||
self.totalMoveTimeMinute = 0
|
||||
self.filename = None
|
||||
self._abort = False
|
||||
self._reenqueue = True
|
||||
self._filamentDiameter = 0
|
||||
self._print_minMax = MinMax3D()
|
||||
self._travel_minMax = MinMax3D()
|
||||
self._progress_callback = progress_callback
|
||||
|
||||
self._incl_layers = incl_layers
|
||||
self._layers = []
|
||||
self._current_layer = None
|
||||
|
||||
def _track_layer(self, pos, arc=None):
|
||||
if not self._incl_layers:
|
||||
return
|
||||
|
||||
if self._current_layer is None or self._current_layer["z"] != pos.z:
|
||||
self._current_layer = {"z": pos.z, "minmax": MinMax3D(), "commands": 1}
|
||||
self._layers.append(self._current_layer)
|
||||
|
||||
elif self._current_layer:
|
||||
self._current_layer["minmax"].record(pos)
|
||||
if arc is not None:
|
||||
self._addArcMinMax(
|
||||
self._current_layer["minmax"],
|
||||
arc["startAngle"],
|
||||
arc["endAngle"],
|
||||
arc["center"],
|
||||
arc["radius"],
|
||||
)
|
||||
|
||||
def _track_command(self):
|
||||
if self._current_layer:
|
||||
self._current_layer["commands"] += 1
|
||||
|
||||
@property
|
||||
def dimensions(self):
|
||||
return self._print_minMax.dimensions
|
||||
|
||||
@property
|
||||
def travel_dimensions(self):
|
||||
return self._travel_minMax.dimensions
|
||||
|
||||
@property
|
||||
def printing_area(self):
|
||||
return self._print_minMax.area
|
||||
|
||||
@property
|
||||
def travel_area(self):
|
||||
return self._travel_minMax.area
|
||||
|
||||
@property
|
||||
def layers(self):
|
||||
return [
|
||||
{
|
||||
"num": num + 1,
|
||||
"z": layer["z"],
|
||||
"commands": layer["commands"],
|
||||
"bounds": {
|
||||
"minX": layer["minmax"].min.x,
|
||||
"maxX": layer["minmax"].max.x,
|
||||
"minY": layer["minmax"].min.y,
|
||||
"maxY": layer["minmax"].max.y,
|
||||
},
|
||||
}
|
||||
for num, layer in enumerate(self._layers)
|
||||
]
|
||||
|
||||
def load(
|
||||
self,
|
||||
filename,
|
||||
throttle=None,
|
||||
speedx=6000,
|
||||
speedy=6000,
|
||||
offsets=None,
|
||||
max_extruders=10,
|
||||
g90_extruder=False,
|
||||
bed_z=0.0,
|
||||
):
|
||||
self._print_minMax.min.z = self._travel_minMax.min.z = bed_z
|
||||
if os.path.isfile(filename):
|
||||
self.filename = filename
|
||||
self._fileSize = os.stat(filename).st_size
|
||||
|
||||
with codecs.open(filename, encoding="utf-8", errors="replace") as f:
|
||||
self._load(
|
||||
f,
|
||||
throttle=throttle,
|
||||
speedx=speedx,
|
||||
speedy=speedy,
|
||||
offsets=offsets,
|
||||
max_extruders=max_extruders,
|
||||
g90_extruder=g90_extruder,
|
||||
)
|
||||
|
||||
def abort(self, reenqueue=True):
|
||||
self._abort = True
|
||||
self._reenqueue = reenqueue
|
||||
|
||||
def _load(
|
||||
self,
|
||||
gcodeFile,
|
||||
throttle=None,
|
||||
speedx=6000,
|
||||
speedy=6000,
|
||||
offsets=None,
|
||||
max_extruders=10,
|
||||
g90_extruder=False,
|
||||
):
|
||||
lineNo = 0
|
||||
readBytes = 0
|
||||
pos = Vector3D(0.0, 0.0, 0.0)
|
||||
currentE = [0.0]
|
||||
totalExtrusion = [0.0]
|
||||
maxExtrusion = [0.0]
|
||||
currentExtruder = 0
|
||||
totalMoveTimeMinute = 0.0
|
||||
relativeE = False
|
||||
relativeMode = False
|
||||
duplicationMode = False
|
||||
scale = 1.0
|
||||
fwretractTime = 0
|
||||
fwretractDist = 0
|
||||
fwrecoverTime = 0
|
||||
feedrate = min(speedx, speedy)
|
||||
if feedrate == 0:
|
||||
# some somewhat sane default if axes speeds are insane...
|
||||
feedrate = 2000
|
||||
|
||||
if offsets is None or not isinstance(offsets, (list, tuple)):
|
||||
offsets = []
|
||||
if len(offsets) < max_extruders:
|
||||
offsets += [(0, 0)] * (max_extruders - len(offsets))
|
||||
|
||||
for line in gcodeFile:
|
||||
if self._abort:
|
||||
raise AnalysisAborted(reenqueue=self._reenqueue)
|
||||
lineNo += 1
|
||||
readBytes += len(line.encode("utf-8"))
|
||||
|
||||
if isinstance(gcodeFile, (io.IOBase, codecs.StreamReaderWriter)):
|
||||
percentage = readBytes / self._fileSize
|
||||
elif isinstance(gcodeFile, (list)):
|
||||
percentage = lineNo / len(gcodeFile)
|
||||
else:
|
||||
percentage = None
|
||||
|
||||
try:
|
||||
if (
|
||||
self._progress_callback is not None
|
||||
and (lineNo % 1000 == 0)
|
||||
and percentage is not None
|
||||
):
|
||||
self._progress_callback(percentage)
|
||||
except Exception as exc:
|
||||
self._logger.debug(
|
||||
"Progress callback %r error: %s", self._progress_callback, exc
|
||||
)
|
||||
|
||||
if ";" in line:
|
||||
comment = line[line.find(";") + 1 :].strip()
|
||||
if comment.startswith("filament_diameter"):
|
||||
# Slic3r
|
||||
filamentValue = comment.split("=", 1)[1].strip()
|
||||
try:
|
||||
self._filamentDiameter = float(filamentValue)
|
||||
except ValueError:
|
||||
try:
|
||||
self._filamentDiameter = float(
|
||||
filamentValue.split(",")[0].strip()
|
||||
)
|
||||
except ValueError:
|
||||
self._filamentDiameter = 0.0
|
||||
elif comment.startswith("CURA_PROFILE_STRING") or comment.startswith(
|
||||
"CURA_OCTO_PROFILE_STRING"
|
||||
):
|
||||
# Cura 15.04.* & OctoPrint Cura plugin
|
||||
if comment.startswith("CURA_PROFILE_STRING"):
|
||||
prefix = "CURA_PROFILE_STRING:"
|
||||
else:
|
||||
prefix = "CURA_OCTO_PROFILE_STRING:"
|
||||
|
||||
curaOptions = self._parseCuraProfileString(comment, prefix)
|
||||
if "filament_diameter" in curaOptions:
|
||||
try:
|
||||
self._filamentDiameter = float(
|
||||
curaOptions["filament_diameter"]
|
||||
)
|
||||
except ValueError:
|
||||
self._filamentDiameter = 0.0
|
||||
elif comment.startswith("filamentDiameter,"):
|
||||
# Simplify3D
|
||||
filamentValue = comment.split(",", 1)[1].strip()
|
||||
try:
|
||||
self._filamentDiameter = float(filamentValue)
|
||||
except ValueError:
|
||||
self._filamentDiameter = 0.0
|
||||
line = line[0 : line.find(";")]
|
||||
|
||||
match = regex_command.search(line)
|
||||
gcode = tool = None
|
||||
if match:
|
||||
values = match.groupdict()
|
||||
if "codeGM" in values and values["codeGM"]:
|
||||
gcode = values["codeGM"]
|
||||
elif "codeT" in values and values["codeT"]:
|
||||
gcode = values["codeT"]
|
||||
tool = int(values["tool"])
|
||||
|
||||
# G codes
|
||||
if gcode in ("G0", "G1", "G00", "G01"): # Move
|
||||
x = getCodeFloat(line, "X")
|
||||
y = getCodeFloat(line, "Y")
|
||||
z = getCodeFloat(line, "Z")
|
||||
e = getCodeFloat(line, "E")
|
||||
f = getCodeFloat(line, "F")
|
||||
|
||||
if x is not None or y is not None or z is not None:
|
||||
# this is a move
|
||||
move = True
|
||||
else:
|
||||
# print head stays on position
|
||||
move = False
|
||||
|
||||
oldPos = pos
|
||||
|
||||
# Use new coordinates if provided. If not provided, use prior coordinates (minus tool offset)
|
||||
# in absolute and 0.0 in relative mode.
|
||||
newPos = Vector3D(
|
||||
x * scale if x is not None else (0.0 if relativeMode else pos.x),
|
||||
y * scale if y is not None else (0.0 if relativeMode else pos.y),
|
||||
z * scale if z is not None else (0.0 if relativeMode else pos.z),
|
||||
)
|
||||
|
||||
if relativeMode:
|
||||
# Relative mode: add to current position
|
||||
pos += newPos
|
||||
else:
|
||||
# Absolute mode: apply tool offsets
|
||||
pos = newPos
|
||||
|
||||
if f is not None and f != 0:
|
||||
feedrate = f
|
||||
|
||||
if e is not None:
|
||||
if relativeMode or relativeE:
|
||||
# e is already relative, nothing to do
|
||||
pass
|
||||
else:
|
||||
e -= currentE[currentExtruder]
|
||||
|
||||
totalExtrusion[currentExtruder] += e
|
||||
currentE[currentExtruder] += e
|
||||
maxExtrusion[currentExtruder] = max(
|
||||
maxExtrusion[currentExtruder], totalExtrusion[currentExtruder]
|
||||
)
|
||||
|
||||
if currentExtruder == 0 and len(currentE) > 1 and duplicationMode:
|
||||
# Copy first extruder length to other extruders
|
||||
for i in range(1, len(currentE)):
|
||||
totalExtrusion[i] += e
|
||||
currentE[i] += e
|
||||
maxExtrusion[i] = max(maxExtrusion[i], totalExtrusion[i])
|
||||
else:
|
||||
e = 0
|
||||
|
||||
# If move, calculate new min/max coordinates
|
||||
if move:
|
||||
self._travel_minMax.record(oldPos)
|
||||
self._travel_minMax.record(pos)
|
||||
if e > 0:
|
||||
# store as print move if extrusion is > 0
|
||||
self._print_minMax.record(oldPos)
|
||||
self._print_minMax.record(pos)
|
||||
|
||||
# move time in x, y, z, will be 0 if no movement happened
|
||||
moveTimeXYZ = abs((oldPos - pos).length / feedrate)
|
||||
|
||||
# time needed for extruding, will be 0 if no extrusion happened
|
||||
extrudeTime = abs(e / feedrate)
|
||||
|
||||
# time to add is maximum of both
|
||||
totalMoveTimeMinute += max(moveTimeXYZ, extrudeTime)
|
||||
|
||||
# process layers if there's extrusion
|
||||
if e:
|
||||
self._track_layer(pos)
|
||||
|
||||
if gcode in ("G2", "G3", "G02", "G03"): # Arc Move
|
||||
x = getCodeFloat(line, "X")
|
||||
y = getCodeFloat(line, "Y")
|
||||
z = getCodeFloat(line, "Z")
|
||||
e = getCodeFloat(line, "E")
|
||||
i = getCodeFloat(line, "I")
|
||||
j = getCodeFloat(line, "J")
|
||||
r = getCodeFloat(line, "R")
|
||||
f = getCodeFloat(line, "F")
|
||||
|
||||
# this is a move or print head stays on position
|
||||
move = (
|
||||
x is not None
|
||||
or y is not None
|
||||
or z is not None
|
||||
or i is not None
|
||||
or j is not None
|
||||
or r is not None
|
||||
)
|
||||
|
||||
oldPos = pos
|
||||
|
||||
# Use new coordinates if provided. If not provided, use prior coordinates (minus tool offset)
|
||||
# in absolute and 0.0 in relative mode.
|
||||
newPos = Vector3D(
|
||||
x * scale if x is not None else (0.0 if relativeMode else pos.x),
|
||||
y * scale if y is not None else (0.0 if relativeMode else pos.y),
|
||||
z * scale if z is not None else (0.0 if relativeMode else pos.z),
|
||||
)
|
||||
|
||||
if relativeMode:
|
||||
# Relative mode: add to current position
|
||||
pos += newPos
|
||||
else:
|
||||
# Absolute mode: apply tool offsets
|
||||
pos = newPos
|
||||
|
||||
if f is not None and f != 0:
|
||||
feedrate = f
|
||||
|
||||
# get radius and offset
|
||||
i = 0 if i is None else i
|
||||
j = 0 if j is None else j
|
||||
r = math.sqrt(i * i + j * j) if r is None else r
|
||||
|
||||
# calculate angles
|
||||
centerArc = Vector3D(oldPos.x + i, oldPos.y + j, oldPos.z)
|
||||
startAngle = math.atan2(oldPos.y - centerArc.y, oldPos.x - centerArc.x)
|
||||
endAngle = math.atan2(pos.y - centerArc.y, pos.x - centerArc.x)
|
||||
arcAngle = endAngle - startAngle
|
||||
|
||||
if gcode in ("G2", "G02"):
|
||||
startAngle, endAngle = endAngle, startAngle
|
||||
arcAngle = -arcAngle
|
||||
if startAngle < 0:
|
||||
startAngle += math.pi * 2
|
||||
if endAngle < 0:
|
||||
endAngle += math.pi * 2
|
||||
if arcAngle < 0:
|
||||
arcAngle += math.pi * 2
|
||||
|
||||
# from now on we only think in counter-clockwise direction
|
||||
|
||||
if e is not None:
|
||||
if relativeMode or relativeE:
|
||||
# e is already relative, nothing to do
|
||||
pass
|
||||
else:
|
||||
e -= currentE[currentExtruder]
|
||||
|
||||
totalExtrusion[currentExtruder] += e
|
||||
currentE[currentExtruder] += e
|
||||
maxExtrusion[currentExtruder] = max(
|
||||
maxExtrusion[currentExtruder], totalExtrusion[currentExtruder]
|
||||
)
|
||||
|
||||
if currentExtruder == 0 and len(currentE) > 1 and duplicationMode:
|
||||
# Copy first extruder length to other extruders
|
||||
for i in range(1, len(currentE)):
|
||||
totalExtrusion[i] += e
|
||||
currentE[i] += e
|
||||
maxExtrusion[i] = max(maxExtrusion[i], totalExtrusion[i])
|
||||
else:
|
||||
e = 0
|
||||
|
||||
# If move, calculate new min/max coordinates
|
||||
if move:
|
||||
self._travel_minMax.record(oldPos)
|
||||
self._travel_minMax.record(pos)
|
||||
self._addArcMinMax(
|
||||
self._travel_minMax, startAngle, endAngle, centerArc, r
|
||||
)
|
||||
if e > 0:
|
||||
# store as print move if extrusion is > 0
|
||||
self._print_minMax.record(oldPos)
|
||||
self._print_minMax.record(pos)
|
||||
self._addArcMinMax(
|
||||
self._print_minMax, startAngle, endAngle, centerArc, r
|
||||
)
|
||||
|
||||
# calculate 3d arc length
|
||||
arcLengthXYZ = math.sqrt((oldPos.z - pos.z) ** 2 + (arcAngle * r) ** 2)
|
||||
|
||||
# move time in x, y, z, will be 0 if no movement happened
|
||||
moveTimeXYZ = abs(arcLengthXYZ / feedrate)
|
||||
|
||||
# time needed for extruding, will be 0 if no extrusion happened
|
||||
extrudeTime = abs(e / feedrate)
|
||||
|
||||
# time to add is maximum of both
|
||||
totalMoveTimeMinute += max(moveTimeXYZ, extrudeTime)
|
||||
|
||||
# process layers if there's extrusion
|
||||
if e:
|
||||
self._track_layer(
|
||||
pos,
|
||||
{
|
||||
"startAngle": startAngle,
|
||||
"endAngle": endAngle,
|
||||
"center": centerArc,
|
||||
"radius": r,
|
||||
},
|
||||
)
|
||||
|
||||
elif gcode == "G4": # Delay
|
||||
S = getCodeFloat(line, "S")
|
||||
if S is not None:
|
||||
totalMoveTimeMinute += S / 60
|
||||
P = getCodeFloat(line, "P")
|
||||
if P is not None:
|
||||
totalMoveTimeMinute += P / 60 / 1000
|
||||
elif gcode == "G10": # Firmware retract
|
||||
totalMoveTimeMinute += fwretractTime
|
||||
elif gcode == "G11": # Firmware retract recover
|
||||
totalMoveTimeMinute += fwrecoverTime
|
||||
elif gcode == "G20": # Units are inches
|
||||
scale = 25.4
|
||||
elif gcode == "G21": # Units are mm
|
||||
scale = 1.0
|
||||
elif gcode == "G28": # Home
|
||||
x = getCodeFloat(line, "X")
|
||||
y = getCodeFloat(line, "Y")
|
||||
z = getCodeFloat(line, "Z")
|
||||
origin = Vector3D(0.0, 0.0, 0.0)
|
||||
if x is None and y is None and z is None:
|
||||
pos = origin
|
||||
else:
|
||||
pos = Vector3D(pos)
|
||||
if x is not None:
|
||||
pos.x = origin.x
|
||||
if y is not None:
|
||||
pos.y = origin.y
|
||||
if z is not None:
|
||||
pos.z = origin.z
|
||||
elif gcode == "G90": # Absolute position
|
||||
relativeMode = False
|
||||
if g90_extruder:
|
||||
relativeE = False
|
||||
elif gcode == "G91": # Relative position
|
||||
relativeMode = True
|
||||
if g90_extruder:
|
||||
relativeE = True
|
||||
elif gcode == "G92":
|
||||
x = getCodeFloat(line, "X")
|
||||
y = getCodeFloat(line, "Y")
|
||||
z = getCodeFloat(line, "Z")
|
||||
e = getCodeFloat(line, "E")
|
||||
|
||||
if e is None and x is None and y is None and z is None:
|
||||
# no parameters, set all axis to 0
|
||||
currentE[currentExtruder] = 0.0
|
||||
pos.x = 0.0
|
||||
pos.y = 0.0
|
||||
pos.z = 0.0
|
||||
else:
|
||||
# some parameters set, only set provided axes
|
||||
if e is not None:
|
||||
currentE[currentExtruder] = e
|
||||
if x is not None:
|
||||
pos.x = x
|
||||
if y is not None:
|
||||
pos.y = y
|
||||
if z is not None:
|
||||
pos.z = z
|
||||
# M codes
|
||||
elif gcode == "M82": # Absolute E
|
||||
relativeE = False
|
||||
elif gcode == "M83": # Relative E
|
||||
relativeE = True
|
||||
elif gcode in ("M207", "M208"): # Firmware retract settings
|
||||
s = getCodeFloat(line, "S")
|
||||
f = getCodeFloat(line, "F")
|
||||
if s is not None and f is not None:
|
||||
if gcode == "M207":
|
||||
# Ensure division is valid
|
||||
if f > 0:
|
||||
fwretractTime = s / f
|
||||
else:
|
||||
fwretractTime = 0
|
||||
fwretractDist = s
|
||||
else:
|
||||
if f > 0:
|
||||
fwrecoverTime = (fwretractDist + s) / f
|
||||
else:
|
||||
fwrecoverTime = 0
|
||||
elif gcode == "M605": # Duplication/Mirroring mode
|
||||
s = getCodeInt(line, "S")
|
||||
if s in [2, 4, 5, 6]:
|
||||
# Duplication / Mirroring mode selected. Printer firmware copies extrusion commands
|
||||
# from first extruder to all other extruders
|
||||
duplicationMode = True
|
||||
else:
|
||||
duplicationMode = False
|
||||
|
||||
# T codes
|
||||
elif tool is not None:
|
||||
if tool > max_extruders:
|
||||
self._logger.warning(
|
||||
"GCODE tried to select tool %d, that looks wrong, ignoring for GCODE analysis"
|
||||
% tool
|
||||
)
|
||||
elif tool == currentExtruder:
|
||||
pass
|
||||
else:
|
||||
pos.x -= (
|
||||
offsets[currentExtruder][0]
|
||||
if currentExtruder < len(offsets)
|
||||
else 0
|
||||
)
|
||||
pos.y -= (
|
||||
offsets[currentExtruder][1]
|
||||
if currentExtruder < len(offsets)
|
||||
else 0
|
||||
)
|
||||
|
||||
currentExtruder = tool
|
||||
|
||||
pos.x += (
|
||||
offsets[currentExtruder][0]
|
||||
if currentExtruder < len(offsets)
|
||||
else 0
|
||||
)
|
||||
pos.y += (
|
||||
offsets[currentExtruder][1]
|
||||
if currentExtruder < len(offsets)
|
||||
else 0
|
||||
)
|
||||
|
||||
if len(currentE) <= currentExtruder:
|
||||
for _ in range(len(currentE), currentExtruder + 1):
|
||||
currentE.append(0.0)
|
||||
if len(maxExtrusion) <= currentExtruder:
|
||||
for _ in range(len(maxExtrusion), currentExtruder + 1):
|
||||
maxExtrusion.append(0.0)
|
||||
if len(totalExtrusion) <= currentExtruder:
|
||||
for _ in range(len(totalExtrusion), currentExtruder + 1):
|
||||
totalExtrusion.append(0.0)
|
||||
|
||||
if gcode or tool:
|
||||
self._track_command()
|
||||
|
||||
if throttle is not None:
|
||||
throttle(lineNo, readBytes)
|
||||
if self._progress_callback is not None:
|
||||
self._progress_callback(100.0)
|
||||
|
||||
self.extrusionAmount = maxExtrusion
|
||||
self.extrusionVolume = [0] * len(maxExtrusion)
|
||||
for i in range(len(maxExtrusion)):
|
||||
radius = self._filamentDiameter / 2
|
||||
self.extrusionVolume[i] = (
|
||||
self.extrusionAmount[i] * (math.pi * radius * radius)
|
||||
) / 1000
|
||||
self.totalMoveTimeMinute = totalMoveTimeMinute
|
||||
|
||||
def _parseCuraProfileString(self, comment, prefix):
|
||||
return {
|
||||
key: value
|
||||
for (key, value) in map(
|
||||
lambda x: x.split(b"=", 1),
|
||||
zlib.decompress(base64.b64decode(comment[len(prefix) :])).split(b"\b"),
|
||||
)
|
||||
}
|
||||
|
||||
def _intersectsAngle(self, start, end, angle):
|
||||
if end < start and angle == 0:
|
||||
# angle crosses 0 degrees
|
||||
return True
|
||||
else:
|
||||
return start <= angle <= end
|
||||
|
||||
def _addArcMinMax(self, minmax, startAngle, endAngle, centerArc, radius):
|
||||
startDeg = math.degrees(startAngle)
|
||||
endDeg = math.degrees(endAngle)
|
||||
|
||||
if self._intersectsAngle(startDeg, endDeg, 0):
|
||||
# arc crosses positive x
|
||||
minmax.max.x = max(minmax.max.x, centerArc.x + radius)
|
||||
if self._intersectsAngle(startDeg, endDeg, 90):
|
||||
# arc crosses positive y
|
||||
minmax.max.y = max(minmax.max.y, centerArc.y + radius)
|
||||
if self._intersectsAngle(startDeg, endDeg, 180):
|
||||
# arc crosses negative x
|
||||
minmax.min.x = min(minmax.min.x, centerArc.x - radius)
|
||||
if self._intersectsAngle(startDeg, endDeg, 270):
|
||||
# arc crosses negative y
|
||||
minmax.min.y = min(minmax.min.y, centerArc.y - radius)
|
||||
|
||||
def get_result(self):
|
||||
result = {
|
||||
"total_time": self.totalMoveTimeMinute,
|
||||
"extrusion_length": self.extrusionAmount,
|
||||
"extrusion_volume": self.extrusionVolume,
|
||||
"dimensions": self.dimensions,
|
||||
"printing_area": self.printing_area,
|
||||
"travel_dimensions": self.travel_dimensions,
|
||||
"travel_area": self.travel_area,
|
||||
}
|
||||
if self._incl_layers:
|
||||
result["layers"] = self.layers
|
||||
|
||||
return result
|
||||
|
||||
|
||||
def getCodeInt(line, code):
|
||||
return getCode(line, code, int)
|
||||
|
||||
|
||||
def getCodeFloat(line, code):
|
||||
return getCode(line, code, float)
|
||||
|
||||
|
||||
def getCode(line, code, c):
|
||||
n = line.find(code) + 1
|
||||
if n < 1:
|
||||
return None
|
||||
m = line.find(" ", n)
|
||||
try:
|
||||
if m < 0:
|
||||
result = c(line[n:])
|
||||
else:
|
||||
result = c(line[n:m])
|
||||
except ValueError:
|
||||
return None
|
||||
|
||||
if math.isnan(result) or math.isinf(result):
|
||||
return None
|
||||
|
||||
return result
|
Loading…
Reference in a new issue